Документ подписан простой электронной подписью и высшего образования Российской Федерации Информация о владельце:
ФИО: Кандрашин Редеральное учреждение

Должность: И.о. ректора ФГАОУ ВО «Самарский государствысинеко образования

университет» «Самарский государственный экономический университет»

Дата подписания: 11.11.2025 14:36:37 Уникальный программный ключ:

2db64eb9605ce27edd3b8e8fdd32c70e0674ddd2

Институт Национальной и мировой экономики

Кафедра Статистики и эконометрики

УТВЕРЖДЕНО

Ученым советом Университета (протокол № $\underline{10}$ от $\underline{22}$ мая $\underline{2025}$ $\underline{\Gamma}$.)

РАБОЧАЯ ПРОГРАММА

Наименование дисциплины Б1.В.09 Теория игр

Основная профессиональная 01.03.05 Статистика программа Бизнес-

образовательная программа аналитика

Квалификация (степень) выпускника бакалавр

Актуализированная редакция рабочей программы дисциплины Б1.В.09 Теория игр, утвержденной Ученым советом Университета 30 мая 2024 г., протокол № 10, в составе основной профессиональной образовательной программы высшего образования — программы бакалавриата по направлению подготовки 01.03.05 Статистика, образовательная программа «Бизнес-аналитика».

Содержание (рабочая программа)

Стр.

- 1 Место дисциплины в структуре ОП
- 2 Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов обучения по программе
- 3 Объем и виды учебной работы
- 4 Содержание дисциплины
- 5 Материально-техническое и учебно-методическое обеспечение дисциплины
- 6 Фонд оценочных средств по дисциплине

Целью изучения дисциплины является формирование результатов обучения, обеспечивающих достижение планируемых результатов освоения образовательной программы.

1. Место дисциплины в структуре ОП

Дисциплина <u>Теория игр</u> входит в часть, формируемая участниками образовательных отношений блока Б1. Дисциплины (модули)

Предшествующие дисциплины по связям компетенций: Финансово-банковская статистика, Макроэкономическая статистика, Методы многомерного статистического анализа, Анализ временных рядов и прогнозирование, Программные средства статистического анализа данных, Бизнес-планирование, Инвестиционный анализ, Консультационный проект

Последующие дисциплины по связям компетенций: Основы актуарных расчетов, Статистические методы принятия управленческих решений, Статистические методы управления качеством, Региональная и муниципальная статистика

2. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов обучения по программе

Изучение дисциплины <u>Теория</u> <u>игр</u> в образовательной программе направлено на формирование у обучающихся следующих компетенций:

Профессиональные компетенции (ПК):

ПК-2 - Способен проводить анализ информации с применением математического аппарата, цифрового статистического и эконометрического инструментария и специализированного программного обеспечения для решения профессиональных задач; разрабатывать прогнозы и сценарии развития общественных явлений и социально-экономических процессов

Планируемые	Планируемые результаты обучения по дисциплине			
результаты				
обучения по				
программе				
ПК-2	ПК-2.1: Знать:	ПК-2.2: Уметь:	ПК-2.3: Владеть (иметь	
			навыки):	
	математико-	разрабатывать и	навыками построения	
	статистические методы	обосновывать систему	моделей и прогнозных	
	анализа общественных	статистических	сценариев развития	
	явлений и социально-	показателей, применять	общественных явлений и	
	экономических	математический аппарат	процессов на основе	
	процессов	и специализированное	пространственной и	
		программное	временной информации с	
		обеспечение для решения	использованием цифровых	
		профессиональных задач	технологий	

3. Объем и виды учебной работы

Учебным планом предусматриваются следующие виды учебной работы по дисциплине:

Очная форма обучения

Duyu yuu kuni nakaru	Всего час/ з.е.
Виды учебной работы	Сем 7
Контактная работа, в том числе:	56.3/1.56
Занятия лекционного типа	18/0.5
Занятия семинарского типа	36/1
Индивидуальная контактная работа (ИКР)	0.3/0.01
Групповая контактная работа (ГКР)	2/0.06
Самостоятельная работа:	53.7/1.49
Промежуточная аттестация	34/0.94
Вид промежуточной аттестации:	
Экзамен	Экз

Общая трудоемкость (объем части образовательной	
программы): Часы	144
Зачетные единицы	4

4. Содержание дисциплины

4.1. Разделы, темы дисциплины и виды занятий:

Тематический план дисциплины <u>Теория игр</u> представлен в таблице.

Разделы, темы дисциплины и виды занятий

Очная форма обучения

			Контактная ј	работа		В	Планируемые
№ п/п	Наименование темы (раздела) дисциплины	Лекции	Практич. занятия занятия занятия	ИКР	ГКР	Самостоятельная работа	результаты обучения в соотношении с результатами обучения по образовательной программе
	Антагонистические игры. Матричные игры. Игры с природой	8	16				ПК-2.1, ПК-2.2, ПК -2.3
	Биматричные игры Методы расчета рисковых ситуаций: неантагонистические игры, бесконечные игры, игры с неполной информацией	10	20				ПК-2.1, ПК-2.2, ПК -2.3
	Контроль	34					
	Итого	18	36	0.3	2	53.7	

4.2 Содержание разделов и тем

4.2.1 Контактная работа

Тематика занятий лекционного типа

№п/ п	Наименование темы (раздела) дисциплины	Вид занятия лекционного типа*	Тематика занятия лекционного типа
1.	Антагонистические игры. Матричные игры. Игры с природой	лекция	Основные понятия ТИ. Виды игр, классификация. Формы описания. Статические игры. Парные игры с нулевой суммой. Игровые модели в экономике. Оптимальные стратегии.
		лекция	Решение игры в чистых и в смешанных стратегиях. Графический метод решения игры 2x2. Решение игр 2xn и mx2
		лекция	Сведение матричной игры к задаче линейного программирования. Общий алгоритм нахождения решения антагонистической конечной игры произвольной размерности. Решение задачи в Excel.
I I TEKTING I		Игры с природой. Задача принятия решений в условиях неопределенности.	

			_
			Решение задачи в MS Excel.
2.	расчета рисковых ситуаций: неантагонистические игры,	лекция	Биматричные игры. Равновесие в чистых стратегиях. Равновесие Нэша. Парето-оптимальность. Игры с неантагонистическими интересами.
	бесконечные игры, динамические игры, игры с неполной	лекция	Равновесие дрожащей руки. Бесконечные игры.
	информацией	лекция	Динамические игры. Модель дуополии Штакельберга. Последовательная торговая сделка (модель Рубинштейна). Совершенное подыгровое равновесие Нэша. Последовательные игры с участием Природы.
		лекция	Повторяемые игры. Двукратно повторяемая игра. Бесконечно повторяемые игры. Стратегии переключения. Достижимые платежи и теорема Фридмана. Модель дуополии Курно. Предлельные Парето-оптимальные профили стратегий.
		лекция	Игры с неполной информацией. Байесовские игры. Разделяющее равновесие Байеса-Нэша. Модель Штакельберга при асимметричной информации. Аукционы.

^{*}лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, обучающимся

Тематика занятий семинарского типа

№п/п	Наименование темы (раздела) дисциплины	Вид занятия семинарского типа**	Тематика занятия семинарского типа
1.	Антагонистические игры. Матричные	практическое занятие	Статические игры. Парные игры с нулевой суммой
	игры. Игры с природой	практическое занятие	Игровые модели в экономике. Оптимальные стратегии
	природоп	практическое занятие	Решение игры в чистых и в смешанных стратегиях.
		практическое занятие	Геометрический метод решения игры 2x2. Решение игр 2xn и mx2.
		практическое занятие	Сведение матричной игры к задаче линейного программирования.
		практическое занятие	Общий алгоритм нахождения решения антагонистической конечной игры произвольной размерности. Решение задачи в Excel.
		практическое занятие	Игры с природой.
		практическое занятие	Задача принятия решений в условиях неопределенности. Решение задачи в Excel.

2.	Бимотрини из играл		Игру с наситатациатинасти
2.	Биматричные игры Методы расчета	практическое	Игры с неантогонистическими интересами. Биматричные игры.
	1	занятие	Равновесие в чистых стратегиях.
	рисковых ситуаций:	практическое	Равновесие Нэша.
	неантагонистически	занятие	Парето-оптимальность.
	е игры, бесконечные	практическое	Равновесие дрожащей руки.
	игры, динамические	занятие	
	игры, игры с	практическое	Бесконечные игры.
	неполной	занятие	
	информацией		Динамические игры. Модель
		практическое	дуополии Штакельберга.
		занятие	Последовательная торговая сделка
			(модель Рубинштейна).
		TIMO PETALLO CALCO	Совершенное подыгровое равновесие Нэша.
		практическое занятие	Последовательные игры с участием
		занятис	Природы.
			Повторяемые игры. Двукратно
		практическое занятие	повторяемая игра. Бесконечно
			повторяемые игры. Стратегии
			переключения.
			Достижимые платежи и теорема
		практическое	Фридмана. Модель дуополии
		занятие	Курно. Предельные
		30111111	Парето-оптимальные профили
			стратегий.
		практическое	Игры с неполной информацией.
		занятие	Байесовские игры. Разделяющее равновесие Байеса-Нэша
			. Модель Штакельберга при
		практическое	
		занятие	
		-	асимметричной информации. Аукционы.

^{**} семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия

Иная контактная работа

При проведении учебных занятий СГЭУ обеспечивает развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств (включая при необходимости проведение интерактивных лекций, групповых дискуссий, ролевых игр, тренингов, анализ ситуаций и имитационных моделей, преподавание дисциплин (модулей) в форме курсов, составленных на основе результатов научных исследований, проводимых организацией, в том числе с учетом региональных особенностей профессиональной деятельности выпускников и потребностей работодателей).

Формы и методы проведения иной контактной работы приведены в Методических указаниях по основной профессиональной образовательной программе.

4.2.2 Сам	остоятельная работа	
№п/п	Наименование темы (раздела)	Вид самостоятельной работы
J 1211/11	дисциплины	***
1.	Антагонистические игры. Матричные игры. Игры с природой	- изучение литературы - тестирование - выполнение домашних заданий
2.	Биматричные игры Методы расчета рисковых ситуаций: неантагонистические игры, бесконечные игры, динамические	изучение литературытестированиевыполнение домашних заданий

игры, игры с неполной информацией	

^{***} самостоятельная работа в семестре, написание курсовых работ, докладов, выполнение контрольных работ

5. Материально-техническое и учебно-методическое обеспечение дисциплины

5.1 Литература:

Основная литература

Челноков, А. Ю. Теория игр : учебник и практикум для вузов / А. Ю. Челноков. — Москва : Издательство Юрайт, 2024. — 223 с. — (Высшее образование). — ISBN 978-5-534-00233-1. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/536207

Дополнительная литература

Конюховский, П. В. Теория игр: учебник для вузов / П. В. Конюховский, А. С. Малова. — Москва: Издательство Юрайт, 2024. — 252 с. — (Высшее образование). — ISBN 978-5-534-17963-7. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/536008

Литература для самостоятельного изучения

- 1. Макаров С.И., Курганова М.В., Нуйкина Е.Ю., Севастьянова С.А. и др. Методы оптимальных решений. Экономико-математические методы и моделирование М: Кнорус, 2022. -298 с.
- 2. Макаров С.И., Курганова М.В., Нуйкина Е.Ю., Севастьянова С.А. и др. Экономико-математические методы и модели. Задачник М: Кнорус, 2010. -203 с.
- 3. Акулич, И. Л. Математическое программирование в примерах и задачах: учеб. пособие. 2-е изд., испр. и доп. М.:Высш.шк., 1993. 336 с.
- 4. Зайчикова Н.А. Методы оптимальных решений: учебное пособие / Н. А. Зайчикова, Е. Ю. Мощенская. Самара: Самар. ин-т (филиал) РГТЭУ, 2012. 272 с.ISBN7 978-5-903878-28-4
- 5. Красс, М. С., Чупрынов, Б. П. Основы математики и ее приложения в экономическом образовании. М.: Дело, 2003. 688 с.
- 6. Кузнецов, Б.Т. Математические методы и модели исследования операций: учеб. пособие. М.: ЮНИТИ-ДАНА, 2005. 390 с.
- 7. Кузнецов, Ю. Н., Кузубов, В. И., Волощенко, А. Б. Математическое программирование: учеб. пособие. 2-е изд., перераб. и дополн. М.: Высш.шк., 1980. 300 с.
- 8. Васин А. А., Морозов В. В. Теория игр и модели математической экономики. М.: МГУ, 2005, 272 с.
- 9. Воробьёв Н. Н. Теория игр для экономистов-кибернетиков. М.: Наука, 1985
- 10. Мазалов В. В. Математическая теория игр и приложения. Изд-во Лань, 2010, 446 с.
- 11. Петросян Л. А., Зенкевич Н. А., Шевкопляс Е. В. Теория игр. СПб: БХВ-Петербург, 2012, 432 с.

5.2. Перечень лицензионного программного обеспечения

- 1. Astra Linux Special Edition «Смоленск», «Орел»; РедОС; ОС "Альт Рабочая станция" 10; ОС "Альт Образование" 10
- 2. МойОфис Стандартный 2, МойОфис Образование, Р7-Офис Профессиональный, МойОфис Стандартный 3, МойОфис Профессиональный 3)

5.3 Современные профессиональные базы данных, к которым обеспечивается

доступ обучающихся

- 1. Профессиональная база данных «Информационные системы Министерства экономического развития Российской Федерации в сети Интернет» (Портал «Официальная Россия» http://www.gov.ru/)
- 2. Государственная система правовой информации «Официальный интернет-портал правовой информации» (http://pravo.gov.ru/)
- 3. Профессиональная база данных «Финансово-экономические показатели Российской Федерации» (Официальный сайт Министерства финансов РФ https://www.minfin.ru/ru/)
- 4. Профессиональная база данных «Официальная статистика» (Официальный сайт Федеральной службы государственной статистики http://www.gks.ru/

5.4. Информационно-справочные системы, к которым обеспечивается доступ обучающихся

- 1. Справочно-правовая система «Консультант Плюс»
- 2. Справочно-правовая система «ГАРАНТ-Максимум»

5.5. Специальные помещения

Учебные аудитории для проведения занятий	Комплекты ученической мебели
лекционного типа	Мультимедийный проектор
	Доска
	Экран
Учебные аудитории для проведения практических	Комплекты ученической мебели
занятий (занятий семинарского типа)	Мультимедийный проектор
	Доска
	Экран
	Компьютеры с выходом в сеть
	«Интернет» и ЭИОС СГЭУ
Учебные аудитории для групповых и индивидуальных	Комплекты ученической мебели
консультаций	Мультимедийный проектор
	Доска
	Экран
	Компьютеры с выходом в сеть
	«Интернет» и ЭИОС СГЭУ
Учебные аудитории для текущего контроля и	Комплекты ученической мебели
промежуточной аттестации	Мультимедийный проектор
	Доска
	Экран
	Компьютеры с выходом в сеть
	«Интернет» и ЭИОС СГЭУ
Помещения для самостоятельной работы	Комплекты ученической мебели
	Мультимедийный проектор
	Доска
	Экран
	Компьютеры с выходом в сеть
	«Интернет» и ЭИОС СГЭУ
Помещения для хранения и профилактического	Комплекты специализированной мебели
обслуживания оборудования	для хранения оборудования

Для проведения занятий лекционного типа используются демонстрационное оборудование и учебно-наглядные пособия в виде презентационных материалов, обеспечивающих тематические иллюстрации.

5.6 Лаборатории и лабораторное оборудование

Лаборатория	Комплекты ученической мебели
информационных	Мульмедийный проектор
технологий в	Доска
профессиональной	Экран
деятельности	Компьютеры с выходом в сеть «Интернет» и ЭИОС СГЭУ
	Лабораторное оборудование

6. Фонд оценочных средств по дисциплине Теория игр:

6.1. Контрольные мероприятия по дисциплине

Вид контроля	Форма контроля	Отметить нужное знаком
Текущий контроль	Тестирование	«+» +
	Практические задачи	+
Промежуточный контроль	Экзамен	+

Порядок проведения мероприятий текущего и промежуточного контроля определяется Методическими указаниями по основной профессиональной образовательной программе высшего образования; Положением о балльно-рейтинговой системе оценки успеваемости обучающихся по основным образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры в федеральном государственном автономном образовательном учреждении высшего образования «Самарский государственный экономический университет».

6.2. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов обучения по программе

Профессиональные компетенции (ПК):

ПК-2 - Способен проводить анализ информации с применением математического аппарата, цифрового статистического и эконометрического инструментария и специализированного программного обеспечения для решения профессиональных задач; разрабатывать прогнозы и сценарии развития общественных явлений и социально-экономических процессов

Планируемые	Планируемые результаты обучения по дисциплине		
результаты			
обучения по			
программе			
	ПК-2.1: Знать:	ПК-2.2: Уметь:	ПК-2.3: Владеть (иметь
			навыки):
	математико-	разрабатывать и	навыками построения
	статистические методы	обосновывать систему	моделей и прогнозных
	анализа общественных	статистических	сценариев развития
	явлений и социально-	показателей, применять	общественных явлений и
	экономических	математический аппарат	процессов на основе
	процессов	и специализированное	пространственной и
		программное	временной информации с
		-	использованием цифровых
		профессиональных задач	технологий
Пороговый	перечень математико-	разрабатывать и	навыками построения
	статистических методов	обосновывать систему	моделей и прогнозных
	анализа общественных	статистических	сценариев развития
	явлений и социально-	показателей, для решения	общественных явлений
	экономических	профессиональных задач	
	процессов		
Стандартный (в	Приемы применения	разрабатывать и	навыками построения

дополнение к	математико-	обосновывать систему	моделей и прогнозных
пороговому)	статистических методов	статистических	сценариев развития
	анализа общественных	показателей, применять	общественных явлений и
	явлений и социально-	математический аппарат	процессов на основе
	экономических	для решения	пространственной и
	процессов	профессиональных задач	временной информации
Повышенный	Основные этапы	выполнять разрабатывать	навыками постановки
(в дополнение к	применения математико-	и обосновывать систему	задачи, построения
пороговому,	статистических методов	статистических	моделей и прогнозных
стандартному)	анализа общественных	показателей, применять	сценариев развития
	явлений и социально-	математический аппарат	общественных явлений и
	экономических	и специализированное	процессов на основе
	процессов	программное	пространственной и
		обеспечение для решения	временной информации с
		профессиональных задач	использованием цифровых
			технологий

6.3. Паспорт оценочных материалов

6.3. Паспорт оценочных материалов				
№ п/п	Наименование темы	Контролируемые	Вид	
	(раздела)	планируемые	контроля/исп	ользуемые
	дисциплины	результаты обучения в	оценочные (
		соотношении с		Ĺ
		результатами обучения	Текущий	Промежуто
		по программе	v	чный
1.	Антагонистические игры. Матричные игры. Игры с природой	ПК-2.1, ПК-2.2, ПК-2.3	Оценка докладов Письменный опрос Практические задачи Тестирование	Экзамен
2.	Биматричные игры Методы расчета рисковых ситуаций: неантагонистические игры, бесконечные игры, динамические игры, игры с неполной информацией	ПК-2.1, ПК-2.2, ПК-2.3	Оценка докладов Письменный опрос Практические задачи Тестирование	Экзамен

6.4.Оценочные материалы для текущего контроля

Оценочные материалы для текущего контроля размещены в ЭИОС СГЭУ в разделе каталога <u>Электронно-оценочные материалы / Бакалавриат / Экономика / Бизнес-аналитика / https://lms2.sseu.ru/course/index.php?categoryid=1796</u>

Задания для тестирования по дисциплине для оценки сформированности компетенций

№ п/п	Задание	Ключ к заданию / Эталонный ответ
1.	Если платежная матрица не имеет «седловой точки», то решение игры, отражающей прогнозы и сценарии развития общественных явлений и социально-экономических процессов: а) не существует; б) следует искать в смешанных стратегиях;	б

	в) равно цене игры;	
	г) равно верхней цене игры.	
2.	В игре с платежной матрицей [5 8 6 3 7] 3 1 4 2 3] заведомо невыгодными стратегиями второго игрока, рассчитанными с применением математического аппарата, являются: а) первая, вторая и четвертая; б) вторая и четвертая; в) четвертая и пятая; г) первая, третья и пятая.	Г
3.	Неверным является утверждение: графически можно решить игру, платежная матрица которой имеет размерность: a) 3 x 3; б) 2 x 6; в) 2 x 2; г) 7 x 2.	a
4.	«Игрой с природой» называют игру, сформированную с применением цифрового статистического и эконометрического инструментария а) в условиях полной непредсказуемости поступков каждого игрока; б) двух антагонистических сторон; в) в условиях полной неопределенности; г) с неразумным противником.	Г
5.	Нижняя цена игры, заданной платежной матрицей (1 2 3) (2 4 5) (3 2 3) (5) 5; (6) 5; (7) 2.	Г
6.	Решение игры следует искать в смешанных стратегиях с применением математического аппарата, если: а) сумма выигрышей равна 0; б) нижняя цена игры равна верхней цене игры; в) нижняя цена игры меньше верхней цены игры; г) нижняя цена игры больше верхней цены игры.	В
7.	В биматричной игре, отражающей прогнозы и сценарии развития общественных явлений и социально-экономических процессов: а) равновесие Нэша всегда совпадает с парето-оптимальным профилем; б) равновесие Нэша не всегда совпадает с равновесием в строго доминирующих стратегиях; в) равновесие Нэша не всегда совпадает с равновесием в слабо доминирующих стратегиях;	Г
8.	г) существует хотя бы одно равновесие Нэша в смешанных стратегиях. Совокупность правил, однозначно определяющих последовательность действий игрока в каждой конкретной ситуации, складывающейся в процессе игры называется	стратегией игрока
9.	Игра, отражающая прогнозы и сценарии развития общественных явлений и социально-экономических процессов, в которой общий капитал игроков не меняется, а лишь перераспределяется в ходе игры, в связи с чем сумма выигрышей равна нулю (проигрыш принимается как отрицательный выигрыш). называется	игрой с нулевой суммой
10.	Величина α — гарантированный выигрыш игрока A называется	нижней ценой игры
11.	Стратегия A_{iont} ,, обеспечивающая получение выигрыша игрока А α , называется.	максиминной
12.	. Если $\alpha = \beta = v$, т.е. $\max_i(\min_j a_{ij}) = \min_i(\max_i a_{ij}) = v,$ то выигрыш игрока A (проигрыш игрока B) определяется числом v , которое называется	ценой игры
13.	Ломаная линия, составленная из частей отрезков, интерпретирующих стратегии игрока В в графиеском методе, расположенная ниже всех отрезков, называется, получаемого игроком А.	нижней границей выигрыша
14.	называется набор выбранных игроками стратегий (Ai , Bj) в биматричной игре.	Профилем стратегий

Примеры практических задач

№ п/п	Задание	Ключ к заданию / Эталонный ответ	
	генция – ПК-2 Способен проводить анализ информации с применение	ем математического	
	та, цифрового статистического и эконометрического инструментария		
	лизированного программного обеспечения для решения профессиона атывать прогнозы и сценарии развития общественных явлений и	льных задач;	
	ьно-экономических процессов		
,	Нижняя цена игры, заданной платежной матрицей рассчитанная с		
	применением математического аппарата		
1.	$\begin{pmatrix} 2 & 3 & 4 \\ 7 & 1 & 2 \end{pmatrix}$	3	
	(1 2 равна равна		
	$\begin{pmatrix} 2 & 3 & 4 \\ 7 & 1 & 2 \\ 5 & 4 & 3 \\ 6 & 2 & 3 \end{pmatrix}$ pabha		
	Определить седловую точку платежной матрицы, примененяя математический		
2.	аппарат (2 7 1)	(A_3, B_3)	
	$B = \begin{pmatrix} 1 & 1 & 3 \end{pmatrix}$	(113, 123)	
	$B = \begin{pmatrix} 2 & 7 & 1 \\ 1 & 1 & 3 \\ 5 & 4 & 3 \end{pmatrix}$ Игра с природой задана матрицей, сформированной с применением цифрового		
	Игра с природой задана матрицей, сформированной с применением цифрового статистического и эконометрического инструментария		
3.	$/4$ 7 1\	2	
3.	$A = \begin{pmatrix} 4 & 7 & 1 \\ 6 & 1 & 3 \\ 2 & 2 & 4 \end{pmatrix}$	3	
	\2 3 4/ Оптимальной стратегией по критерию Вальда является		
	Игра с природой задана матрицей, полученной с применением цифрового		
	статистического и эконометрического инструментария		
4.	$\begin{pmatrix} 2 & 3 & 4 & 5 \\ 6 & 7 & 3 & 2 \\ 1 & 6 & 1 & 4 \end{pmatrix}$	2	
	$\begin{pmatrix} 0 & 7 & 3 & 2 \\ 1 & 6 & 1 & 4 \end{pmatrix}$		
	Оптимальной стратегией по критерию Гурвица является		
	Слабо доминирующей стратегией первого игрока в игре, рассчитанной с		
	применением математического аппарата $B_1 B_2 B_3 B_4$		
5.	A_1 $\begin{bmatrix} 3;7 & 3;4 & 4;5 & 5;6 \end{bmatrix}$	A_2	
	A_2 3;8 4;6 5;3 7;2	112	
	A_3 1;8 2;6 5;3 3;2		
	является		
	Доминирующей стратегией второго игрока в игре, отражающей прогнозы и сценарии развития общественных явлений и социально-экономических		
	процессов:		
	B_1 B_2 B_3 B_4	<u>.</u>	
6.	A_1 3;7 3;4 4;5 5;6	B_1	
	A_2 3;8 4;6 5;3 7;2		
	A_3 1;5 2;4 5;3 3;2		
	является Равновесие Нэша в игре, рассчитанное с применением математического		
	аппарата		
7	$B_1 \qquad B_2$	(A	
7.	A_1 2;2 2;3	(A_1,B_2)	
	A_2 3;1 1;2		
	реализуется в профиле стратегий		

6.5. Оценочные материалы для промежуточной аттестации

Фонд вопросов для проведения промежуточного контроля в форме зачета

№ п/п	Задание	Ключ к заданию / Эталонный ответ	
Компетенция – ПК-2 Способен проводить анализ информации с применением математического			
аппарата, цифрового статистического и эконометрического инструментария и специализированного			
прог	программного обеспечения для решения профессиональных задач; разрабатывать прогнозы и		

	сценарии развития общественн	ых явлений и социально-экономических процессов
1.	Игра двух лиц с нулевой	Определение 1. Если в игре игроки объединяются в две группы, преследующие противоположные цели, то такая игра
	суммой, полученная в	называется игрой двух лиц (парная игра).
	результате анализа информации	Определение 2. Игрой с нулевой суммой называется игра, в
		которой общий капитал игроков не меняется, а лишь перераспределяется в ходе игры, в связи с чем сумма
		выигрышей равна нулю (проигрыш принимается как
		отрицательный выигрыш).
2.	Матричные игры,	Игра состоит из двух ходов: игрок А выбирает одну из
	моделирующие сценарии развития общественных явлений	возможных стратегий $A_i,\ i=\overline{1,m},$ а игрок B выбирает одну из
	и социально-экономических	возможных стратегий B_j , $j=\overline{1,n}$. Каждый выбор производится
	процессов:	при полном незнании выбора соперника. В результате выигрыш
		игроков составит соответственно a_{ij} и $-a_{ij}$. Цель игрока А —
		максимизировать величину a_{ij} , а игрока В — минимизировать эту
		величину.
		Определение 1 . Матрица, составленная из величин a_{ij} , $i =$
		$\overline{1,m},j=\overline{1,n},$
		a_{21} a_{22} a_{2n}
		$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \dots & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \dots \dots$
		$\langle a_{m1} a_{m2} a_{mn} \rangle_{m \times n}$
		называется платежной матрицей, или матрицей игры. Каждый
		элемент платежной матрицы $a_{ij},\ i=\overline{1,m},j=\overline{1,n}$ равен
		выигрышу A (проигрышу В), если он выбрал стратегию $A_i,\ i=$
3.	Have year accountance	$1, m,$ а игрок B выбирал стратегию $B_j, j = 1, n.$
3.	Цена игры, рассчитанная с применением математического	Найдем наилучшую стратегию первого игрока. Если игрок А
	•	выбрал стратегию $A_i,\ i=\overline{1,m},$ то в худшем случае (например,
		если его ход известен В) он получит выигрыш $a_i = \min_i a_{ij}$.
		Предвидя такую возможность, игрок А должен выбрать такую
		стратегию, чтобы максимизировать свой минимальный выигрыш.
		$\alpha = \max_{i} \alpha_{i} = \max_{i} (\min_{j} \alpha_{ij}).$
		Определение 1. Величина $lpha$ — гарантированный выигрыш
		игрока A называется нижней ценой игры. Стратегия $A_{ioпт}$,
		обеспечивающая получение выигрыша α , называется
		максиминной.
		Если первый игрок будет придерживаться своей
		максиминной стратегии, то у него есть гарантия, что он в любом
		случае выиграет не меньше α.
		Аналогично определяется наилучшая стратегия второго
		игрока. Игрок В при выборе стратегии B_j , $j=\overline{1,n}$ в худшем
		случае получит проигрыш $eta_j = \max_i a_{\mathrm{ij}}$. Он выбирает
		ι стратегию $B_{j_{\mathrm{OIII}}}$, при которой его проигрыш будет минимальным и
		составит
		$\beta = \min_{j} \beta_{j} = \min_{j} (\max_{i} a_{ij}).$
		Определение 2. Величина β — гарантированный проигрыш
		игрока В называется верхней ценой игры. Стратегия B_{jont} ,
		обеспечивающая получение проигрыша eta , называется
		минимаксной.
		Если второй игрок будет придерживаться своей
		минимаксной стратегии, то у него есть гарантия, что он в любом случае проиграет не больше β .

разумных действиях партноров ограничен керхыей и нижней мемой игры. Для матричной игры справедливо неравелентво с $Onpedeneusa 3$. Если $\alpha = \beta = v$, τe . $max(m)na_{ij}) = min(maxa_{ij}) = v$, то выигрыш игрока A (проигрыш игрока B) определяется чи v . Опо изывается пеной игры. 4. Седиловая точка игры, сферонированной с применением пифрового статистического о изконометрического о изконометри и изконометрического о изконометрического о изконометри о изрока наборам вероитностей $\overline{X}(x_1, x_2,, x_n)$, для координых которых выпольногох условия $\sum_{i=1}^{n} x_i = 1$, $y_i > 0$, $i = 1$, $m > 0$, $i = 1$, $m > 0$, $i = 1$, $i = $		1	Φ
1. Седловая точка игры, сопозывавется ценой игры. 2. Седловая точка игры, сопозывавется ценой игры. 2. Седловая точка игры, сформированной с применением инфрового статистического и эконометрического инкструментария 2. Седловой точкой магрицы. 3. Седловой точкой седловой точкой магрицы. 3. Седловой точкой седловой точкой магрицы. 3. Седловой точкой			Фактический выигрыш игрока А (проигрыш игрока В) при разумных действиях партнеров ограничен верхней и нижней ценой игры. Для матричной игры справедливо неравенство $\alpha \le \beta$. Определение 3. Если $\alpha = \beta = v$, т.е.
4. Седловая точка игры, сформированной с применением шифрового статистического и эконометрического иниструментария иниструментария информации (Седловой точкой наре оптимальных стратегий (Ават. Врап.), называется седловой точкой матрицы. Этот элемент является инобразорованной с применением прово. В коевокупность — решение игры, которое обадае свойством: ссли один из игроков придерживается оптимальной стратегии, то пторому отклонение от своей оптимальной стратегии и можно объементария (Пременен 1. Сложная стратегия, состоящая в случай называется селитий о определенным частотями, называется кемпанию). В игре, митрина которой имеет размерность $\overline{X}(x_1, x_2,, x_n)$ которых выполняются условия $\sum_{i=1}^{n} x_i = 1, x_i \ge 0, i = \overline{1, m}$. Аналогично для второго игрока наборым вероятностей определяют <i>п</i> -мерные векторы $\overline{Y}(y_1, y_2,, y_n)$, для координах которых выполняются условия $\sum_{i=1}^{n} x_i = 1, y_i \ge 0, j = \overline{1, m}$. Выигрым первого игрока при к поторым и проже менеты и при к применеть свои чистовъзовании смещанны стратегий определяют <i>п</i> -мерные векторы $\overline{Y}(y_1, y_2,, y_n)$, для координах которых выполняются условия $\sum_{i=1}^{n} x_i = 1, y_i \ge 0, j = \overline{1, m}$. Выигрым первого игрока пра к математическое ожидание выпра которых как математическое ожидание стратегия, условные при к претег, по к райей мере, одно решение отможно в тоторых райей мере, одно решение отможно в тоторы в тре, полученной в результите внашиваем и разменет, по крайей мере, одно решение отможно в тоторы в тре, полученной в результите внашиваем стратегия. Дублирующими называются стратегия, усторых подъя в тре, отможно в тоторы в тре, стотовы палажей математическое ожидание в тоторы в тре, стотовы палажей			$\max_{i}(\min_{j}a_{ij}) = \min_{j}(\max_{i}a_{ij}) = v,$
сформированной с применением пифрового статистического и эконометрического инструментария инструментария инструментария Седіловой точкой точкой матрицы. Этот элемент является ценой игры. Седіловой точкой матрицы. Определения проков. Их совокунность — решение пры, которое обладав свойством: если один из игроков придерживается оптимальной стратегии и в может быть выгодным. Определение 1. Сложная стратегия, состоящая в случай инструментария инструментария определение 1. Сложная стратегия, состоящая в случай инструментария инст			то выигрыш игрока А (проигрыш игрока В) определяется числом v. Оно называется ценой игры.
5. Смещанные стратегии в игре, сформированиой с применением пифрового статистического и эконометрического и ниструментария 5. Смещанные стратегии в игре, сформированиой с применением пифрового статистического и эконометрического и ниструментария 6. В игре, магрица которой имеет размерность $m \times n$, стрателей с которыми игрох применяет свои чистые стратегии. Эти наможно рассмотреть, как m -мерные векторы, для координат которых выполняются условия 8. $\sum_{i=1}^{m} x_i = 1, x_i \ge 0, i = \overline{1, m}.$ 4. Аналогично для второго игрока наборы вероятностей определяют n -мерные векторы $\overline{Y}(y_1, y_2,, y_n)$, для координахоторых выполняются условия 8. $\sum_{i=1}^{m} y_i = 1, y_i \ge 0, j = \overline{1, m}.$ 8. Выигрыш первого игрока при использовании смещанные стратегий определяют как математическое ожидание выигры. Т.е. он равен 8. $\sum_{i=1}^{m} \sum_{j=1}^{n} q_{ij} x_i y_j.$ 8. Изблирующие и доминирующие стратегий и в игре, полученной в результате анализа информации 9. Смеделение 1. Дублирующими называются стратегии, усторых соответствующие элементы платежной матрицы больше соответствующим элементов k -й стратегий. В называется над k і стратегій. Если вес элементы k -го столобца, то j -я стратегия и в называется над k і стратегій. Если вес элементы k -го столобца, то j -я стратегия и в называется над k -й стратегий. В называется доминирующей над k -	4.	сформированной с применением цифрового статистического и эконометрического инструментария	соответствующий паре оптимальных стратегий $(A_{ioпт}, B_{joпт})$, называется седловой точкой матрицы. Этот элемент является ценой игры. Седловой точке соответствуют оптимальные стратегии игроков. Их совокупность — решение игры, которое обладает
оформированной с применением пифрового статистического и эконометрического инструментария применении всех стратегий с определенными частотами, называется смещанной. В игре, матрица которой имеет размерность $m \times n$, страт первого игрока задаются наборами вероятностей $\overline{X}(x_1, x_2,, c$ которых выполняются условия $\sum_{i=1}^n x_i = 1, x_i \ge 0, \ i = \overline{1, m}.$ Аналогично для второго игрока наборы вероятностей определяют n -мерные векторы, для координат которых выполняются условия $\sum_{i=1}^n y_i = 1, y_i \ge 0, \ j = \overline{1, m}.$ Выигрыш первого игрока наборы вероятностей определяют n -мерные векторы $\overline{Y}(v_1, v_2,, v_n)$, для координат которых выполняются условия $\sum_{i=1}^n y_i = 1, y_i \ge 0, \ j = \overline{1, m}.$ Выигрыш первого игрока при использовании смещанны стратегий определяют как математическое ожидание выигры $\sum_{i=1}^n y_i = 1, y_i \ge 0, \ j = \overline{1, m}.$ Выигрыш первого игрока при использовании смещанны стратегий определяют как математическое ожидание выигры $\sum_{i=1}^n y_i = 1, y_i \ge 0, \ j = \overline{1, m}.$ Выигрыш первого игрока при использовании смещанны стратегий определяют как математическое ожидание выигры $\sum_{i=1}^n y_i = 1, y_i \ge 0, \ j = \overline{1, m}.$ Выигрыш первого игрока при использовании смещанны стратегий определяют как математическое ожидание выигры $\sum_{i=1}^n x_i = 1, y_i \ge 0, \ j = \overline{1, m}.$ Выигрыш первого игрока при использовании смещанных стратегий. Определение 1. Дублирующим называются стратегии, усторых соответствующих элементов k -й строки платежно матрицы больше соответствующих элементов k -й строки, то стратегия игрока А называется над k -й стратегией. Если все элементы k -й строки платежно матрицы больше соответствующих элементов k -й строки, то стратегия игрока А называется над k -й стратегией. Если все элементы k -й строки, то стратегией игрока А называется доминирующей над k -й стратегией. Если все элементы k -й строки, то стратегией игрока А называется над k -й стратегией. Если все элементы k -й стратегией. Если все элементы k -й стратегией. Если все элементы k -й стратег			стратегии, то второму отклонение от своей оптимальной
инструментария в игре, матрица которои имеет размерность $m \times n$, стран первого игрока задаются наборами вероятностей $\overline{X}(x_1, x_2, \dots, x_n)$ с которыми игрок применяет свои чистые стратегии. Эти най можно рассмотреть, как m -мерные векторы, для координат которых выполняются условия $\sum_{l=1}^m x_l = 1, x_i \ge 0, \ i = \overline{1, m}.$ Аналогично для второго игрока наборы вероятностей определяют n -мерные векторы $\overline{Y}(y_1, y_2, \dots, y_n)$, для координат которых выполняются условия $\sum_{j=1}^n y_j = 1, y_j \ge 0, \ j = \overline{1, m}.$ Выигрыш первого игрока при использовании смещаннь стратегий определяют как математическое ожидание выигрь т.е. он равен $\sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i \ y_j.$ $\underline{Teopema\ I}.$ (Неймана. Основная теорема теории игр). Каждая конечная игра имеет, по крайней мере, одно решени возможно, в области смещанных стратегий. Определение 1 . Дублирующие и доминирующие стратеги и поминирующие 1 . Дублирующим называются стратегии, которых соответствующих элементов k -й строки платежно матрицы больше соответствующих элементов k -й строки, то стратегия игрока 1 называется над k -й стратегией. Если вее элементы 1 -го столбца платежной матрицы меньное соответствующих элементов k -й стратегией k -й стратегия и k -й вазывается доминирующей над k -й стратегией. Если вее элементы k -го столбца, то k -я стратегия и k -и вазывается доминирующей над k -й стратегией. k -й стратегия и k -и вазывается доминирующей над k -й стратегией. k -и стратегия и k -и стратегией k -и стратегией k -и стратегией k -и стратегия и k -и стратегия и k -и стратегия и k -и стратегия и k -и стратегией. k -и стратегия и k -и стратегия и k -и стратегией k -и стратегия и k -и стратегией. k -и стратегией k -и стратегией k -и стратегией k -и стратегией k -и стратегия и k -и стратегией k -и стр	5.	сформированной с применением цифрового статистического и	называется смешанной.
Аналогично для второго игрока наборы вероятностей определяют n -мерные векторы $\overline{Y}(y_1, y_2,, y_n)$, для координат которых выполняются условия $\sum_{j=1}^n y_j = 1, y_j \ge 0, \ j = \overline{1,n}.$ Выигрыш первого игрока при использовании смешаннь стратегий определяют как математическое ожидание выигры т.е. он равен $\sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i \ y_j.$ $\underline{Teopena\ 1.} \text{ (Неймана. Основная теорема теории игр).}$ Каждая конечная игра имеет, по крайней мере, одно решение возможно, в области смещанных стратегий. $\underline{Onpedenenue\ 1.} \text{ Дублирующим } \text{ называются стратегии, } \text{ которых соответствующие элементы } i-i \text{ строки платежно матрицы больше соответствующих элементов } k-i \text{ строки платежно матрицы больше соответствующих элементов } k-i \text{ строки платежно матрицы больше соответствующих элементов } k-i \text{ строки платежно матрицы больше соответствующих элементов } k-i \text{ строки, то стратегия игрока A называется над } k-i \text{ строки платежно матрицы меньше соответствующих элементов } k-i \text{ строки, то стратегия игрока A называется над } k-i \text{ строки, то стратегия игрока A называется над } k-i \text{ строки, то стратегия игрока A называется над } k-i \text{ строки, то стратегия игрока A называется над } k-i \text{ строки, то стратегия игрока A называется над } k-i \text{ строки, то стратегия игрока A называется над } k-i \text{ строки, то стратегия игрок A называется над } k-i \text{ стратегией.}$ 7. Решение матричных игр 2x2 графический метод применим к играм, в которых хотя (в диниграм) и прок имеет только две стратегии. Рассмотрим игру (2 з один игрок имеет только две стратегии. Рассмотрим игру (2 з один игрок имеет только две стратегии. Рассмотрим игру (2 з один игрок имеет только две стратегии. Рассмотрим игру (2 з один игрок имеет только две стратегии. Рассмотрим игру (2 з одинарата		инструментария	первого игрока задаются наборами вероятностей $\overline{X}(x_1, x_2,, x_m)$, с которыми игрок применяет свои чистые стратегии. Эти наборы можно рассмотреть, как m -мерные векторы, для координат
определяют n -мерные векторы $\overline{Y}(y_1, y_2,, y_n)$, для координат которых выполняются условия $\sum_{j=1}^n y_j = 1, y_j \ge 0, \ j = \overline{1,n}.$ Выигрыш первого игрока при использовании смешаннь стратегий определяют как математическое ожидание выигрыт.е. он равен $\sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i \ y_j.$ $\underline{Teopema\ 1.} \ (\text{Неймана. Основная теорема теории игр}).$ Каждая конечная игра имеет, по крайней мере, одно решение возможно, в области смещанных стратегий. \underline{C} Определение \underline{C} Дублирующие и доминирующие стратегии в игре, полученной в результате анализа информации $\underline{C} = \underline{C} = $			$\sum_{i=1}^m x_i = 1, x_i \ge 0, i = \overline{1, m}.$
Выигрыш первого игрока при использовании смешанны стратегий определяют как математическое ожидание выигрыте. Он равен			определяют n -мерные векторы $\overline{Y}(y_1, y_2,, y_n)$, для координат
стратегий определяют как математическое ожидание выигрыте. он равен $\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i \ y_j.$ $\frac{Teopema\ I.}{Eopema\ I.} \text{ (Неймана. Основная теорема теории игр).}$ Каждая конечная игра имеет, по крайней мере, одно решение возможно, в области смешанных стратегий. $\frac{Onpedenenue\ I.}{Onpedenenue\ I.} \text{ Дублирующим называются стратегии, у которых соответствующие элементы платежной матрицы одинаковы.}$ $\frac{Onpedenenue\ 2.}{Onpedenenue\ 2.} \text{ Если все элементы } i\text{-й строки платежно матрицы больше соответствующих элементов } k\text{-й стратегией.}$ $\frac{Onpedenenue\ 2.}{Onpedenenue\ 2.} \text{ Если все элементы } i\text{-й строки платежно матрицы больше соответствующих элементов } k\text{-й стратегией.}$ $\frac{Onpedenenue\ 2.}{Onpedenenue\ 3.} \text{ Если все элементы } i\text{-го столбца, то } j\text{-я стратегия и в называется над } k\text{-й стратегией.}$ $\frac{Onpedenenue\ 3.}{Onpedenenue\ 3.} \text{ Если все элементы } i\text{-го столбца, то } j\text{-я стратегия и в называется доминирующей над } k\text{-й стратегией.}$ $\frac{Onpedenenue\ 3.}{Onpedenenue\ 3.} \text{ Стратегией.}$ $Onpedenenue\$			$\sum_{j=1}^{n} y_j = 1, y_j \ge 0, j = \overline{1, n}.$
 Теорема 1. (Неймана. Основная теорема теории игр). Каждая конечная игра имеет, по крайней мере, одно решение возможно, в области смешанных стратегий. Дублирующие и доминирующие стратегии в игре, полученной в результате анализа информации Определение 2. Если все элементы платежной матрицы одинаковы. Определение 2. Если все элементы i-й строки платежно матрицы больше соответствующих элементов k-й строки, то стратегия игрока А называется над k-й стратегией. Если все элементы j-го столбца платежной матрицы меньше соответствующих элементов k-го столбца, то j-я стратегия играненты доминирующей над k-й стратегией. Решение матричных игр 2х2 графическим методом, найденное сприменением математического аппарата 			Выигрыш первого игрока при использовании смешанных стратегий определяют как математическое ожидание выигрыша, т.е. он равен
Каждая конечная игра имеет, по крайней мере, одно решение возможно, в области смешанных стратегий. 6. Дублирующие и доминирующие стратегии в игре, полученной в результате анализа информации 6. Определение 1. Дублирующими называются стратегии, у которых соответствующие элементы платежной матрицы одинаковы. 6. Определение 2. Если все элементы і-й строки платежно матрицы больше соответствующих элементов к-й строки, то стратегия игрока А называется над к-й стратегией. Если все элементы ј-го столбца платежной матрицы меньше соответствующих элементов к-го столбца, то j-я стратегия игрок изментов к-й стратегией. 7. Решение матричных игр 2х2 графическим методом, найденное содин игрок имеет только две стратегии. Рассмотрим игру (2 у матрицей			$\sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i y_j.$
которых соответствующие элементы платежной матрицы одинаковы. **Onpedenenue 2.** Если все элементы <i>i</i> -й строки платежном матрицы больше соответствующих элементов <i>k</i> -й строки, то стратегия игрока А называется над <i>k</i> -й стратегией. Если все элементы <i>j</i> -го столбца платежной матрицы меньше соответствующих элементов <i>k</i> -го столбца, то <i>j</i> -я стратегия иг В называется доминирующей над <i>k</i> -й стратегией. 7. Решение матричных игр 2х2 графическим методом, найденное сприменением математического аппарата			<u>Теорема 1.</u> (Неймана. Основная теорема теории игр). Каждая конечная игра имеет, по крайней мере, одно решение, возможно, в области смешанных стратегий.
матрицы больше соответствующих элементов k -й строки, то стратегия игрока A называется над k -й стратегией. Если все элементы j -го столбца платежной матрицы меньше соответствующих элементов k -го столбца, то j -я стратегия иг B называется доминирующей над k -й стратегией. 7. Решение матричных игр $2x2$ графический метод применим к играм, в которых хотя один игрок имеет только две стратегии. Рассмотрим игру ($2x$ матрицей	6.	стратегии в игре, полученной в	
графическим методом, найденное содин игрок имеет только две стратегии. Рассмотрим игру (2 з матрицей			элементы ј-го столбца платежной матрицы меньше соответствующих элементов k -го столбца, то j -я стратегия игрока
$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{24} & a_{22} \end{pmatrix}$	7.	графическим методом, найденное с применением математического	

	без седловой точки. Решением игры являются смешанные стратегии игроков $\overline{X}(x_1, x_2)$ и $\overline{Y}(y_1, y_2)$.
	Для каждой из 2 стратегий игрока А строится
	соответствующий ей отрезок на плоскости. Находится нижняя граница выигрыша, получаемого игроком A, (ломаная $B_1KB)_2$ и
	определяется точка на нижней границе, соответствующая
	наибольшему выигрышу. Точка K , в которой он максимален, определяет цену игры и ее решение.
	†
	B_1 B_2 B_2 B_3
	<i>u</i> ₁₂ <i>K</i>
	a_{11} B_1 B_2 A_{22}
	v
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Определение 1. Ломаная линия, составленная из частей
	отрезков, интерпретирующих стратегии игрока В, расположенная ниже всех отрезков, называется нижней границей выигрыша,
	получаемого игроком А.
	Определение 2. Стратегии, части которых образуют
	нижнюю границу выигрыша, называются активными стратегиями.
	В игре (2 × 2) обе стратегии являются активными.
8. Критерий Вальда и критерий максимума в играх с природой,	1. Критерий Вальда. Рекомендуется применять максиминную стратегию. Она выбирается из условия
построенных с применением цифрового статистического и	$\max_{i}(\min_{i}\alpha_{ij})$
эконометрического инструментария	и совпадает с нижней ценой игры. Критерий является
interpy.nenrupin	пессимистическим, считается, что природа будет действовать
	наихудшим для человека способом.
	2. Критерий максимума. Он выбирается из условия
	$\max_{i}(\max_{j}a_{ij}).$
	Критерий является оптимистическим, считается, что
	природа будет наиболее благоприятна для человека.
9. Критерий Гурвица в играх с природой	Критерий Гурвица. Критерий рекомендует стратегию, определяемую по формуле
	$\max_{i}(\alpha \min_{j} a_{ij} + (1 - \alpha) \max_{j} a_{ij}),$
	где α — степень оптимизма и изменяется в диапазоне [0, 1].
	Критерий придерживается некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и
	наилучшего поведения природы. При α = 1 критерий
	превращается в критерий Вальда, при $\alpha = 0$ — в критерий максимума. На α оказывает влияние степень ответственности
	лица, принимающего решение по выбору стратегии. Чем больше
	последствия ошибочных решений, больше желания

		застраховаться, тем α ближе к единице.
10.	Критерий Сэвиджа в играх с природой, полученных в результато анализа информации	$\mathit{Критерий}\mathit{Сэвиджa}.$ Суть критерия состоит в выборе такой стратегии, чтобы не допустить чрезмерно высоких потерь, к которым она может привести. Находится матрица рисков, элементы которой показывают, какой убыток понесет человек (фирма), если для каждого состояния природы он не выберет наилучшей стратегии. $R = \begin{pmatrix} r_{11} & r_{12} & & r_{1n} \\ r_{21} & r_{22} & & r_{2n} \\ & \\ r_{m1} & r_{m2} & & r_{mn} \end{pmatrix}_{m \times n}$ Элементы матрицы рисков находятся по формуле $r_{ij} = \max_i a_{ij} - a_{ij},$ где $\max_i a_{ij}$ — максимальный элемент в столбце исходной матрицы.
		Оптимальная стратегия определяется выражением $\min_{i}(\max_{j}r_{ij}).$
11.	Биматричные игры, отражающие сценарии развития общественных явлений и социально-экономических процессов:	Рассмотрим конечную игру с ненулевой суммой, т. е. такую, в которой множества стратегий игроков конечны. Игрок А выбирает одну из возможных стратегий A_i , $i=\overline{1,m}$, а игрок В выбирает одну из возможных стратегий B_j , $j=\overline{1,n}$. Каждый выбор производится при полном незнании выбора соперника. В результате выигрыш игроков составит соответственно a_{ij} и b_{ij} . ($a_{ij} \neq b_{ij}$). Таким образом, конечная игра с ненулевой суммой полностью определяется двумя матрицами (a_{ij}) и (b_{ij}) размера $m \times n$, поэтому называется биматричной. Эти матрицы удобно представлять одной матрицей — платежной матрицей игры:
		$A = \begin{pmatrix} a_{11} \; ; \; b_{11} & a_{12} \; ; \; b_{12} & & a_{1n} \; ; \; b_{1n} \\ a_{21} \; ; \; b_{21} & a_{22} \; ; \; b_{22} & & a_{2n} \; ; \; b_{2n} \\ & \\ a_{m1} \; ; \; b_{m1} & a_{m2} \; ; \; b_{m2} & & a_{mn} \; ; \; b_{mn} \end{pmatrix}_{m \times n}$ Биматричная игра, как и матричная, происходит партиями. Цель каждого игрока — выиграть как можно бо́льшую сумму в результате большого числа партий. Понятия чистых и смещанных стратегий игроков в биматричных играх вводятся аналогично тому, как это было сделано в матричных играх
12.	Равновесие в строго доминирующих и слабо доминирующих стратегиях, рассчитанное с применением математического аппарата	Определение 1. Стратегия первого игрока A_{i^*} называется строго доминирующей, если для любой стратегии второго игрока $B_j, j = \overline{1,n}$ выполняется неравенство $a_{i^*j} > a_{ij}, i^* \neq i$. При любой стратегии второго игрока платеж, который получает первый игрок , играя стратегию A_{i^*} , больше, чем платеж, который он получает, играя любую другую стратегию. Стратегия второго игрока B_{j^*} называется строго доминирующей, если для любой стратегии первого игрока $A_i, i = \overline{1,m}$ выполняется неравенство $b_{ij^*} > b_{ij}, j^* \neq j$.

		Если у игрока в некоторой игре есть строго доминирующая стратегия, то он будет играть именно ее: если он сыграет эту стратегию, то его выигрыш будет максимален.
		Определение 2. Стратегия первого игрока A_{i^*} называется слабо доминирующей, если для любой стратегии второго игрока B_j , $j=\overline{1,n}$ выполняется неравенство $a_{i^*j}\geq a_{ij}, i^*\neq i$. Стратегия второго игрока B_{j^*} называется слабо доминирующей, если для любой стратегии первого игрока $A_i, i=\overline{1,m}$ выполняется неравенство $b_{ij^*}\geq b_{ij}, j^*\neq j$.
		Любая строго доминирующая стратегия является слабо доминирующей. Обратное утверждение неверно: не любая слабо доминирующая стратегия является строго доминирующей.
		Определение 3. Профиль стратегий (A_i, B_j) называется равновесием в строго доминирующих стратегиях, если эти стратегии являются строго доминирующими для каждого игрока.
		Определение 4. Профиль стратегий (A_i, B_j) называется равновесием в слабо доминирующих стратегиях, если эти стратегии являются слабо доминирующими для каждого игрока.
13.	_	Определение 1. Профиль стратегий (A_{i^*}, B_{j^*}) называется Парето-оптимальной, если выполняются неравенства: Профиль стратегий (A_{i^*}, B_{j^*}) называется Парето-оптимальной $a_{i^*j} \ge a_{ij}, \qquad b_{ij^*} \ge b_{ij}, \qquad i = \overline{1,m} \;, \; j = \overline{1,n} \;.$
		Определение 2. Равновесием Нэша (в чистых стратегиях) называется профиль стратегий (A_{i^*}, B_{j^*}) , каждая из которых для каждого игрока есть наилучший ответ на стратегии всех оппонентов.
		$a_{i^*j^*} \ge a_{ij^*}, b_{i^*j^*} \ge b_{i^*j}, \qquad i = \overline{1,m} \;, \; j = \overline{1,n} \;.$ Равновесие— это такой профиль стратегий, от которого ни одному из игроков не выгодно отклоняться, при том условии, что его же играют все остальные игроки. Равновесие Нэша может не
		совпадать с парето-оптимальным профилем. <u>Теорема 1.</u> Равновесие в строго (слабо) доминирующих стратегиях будет являться и равновесием Нэша <u>Теорема 2.</u> Равновесие в строго доминирующих стратегиях будет единственным равновесием Нэша
		Анализ биматричной игры сводится к поиску максиминных стратегий игроков, т. е. стратегий, которые обеспечивают игрокам получение максимально возможного гарантированного выигрыша вне зависимости от действий противника. Если решение игры не удается найти в чистых стратегиях, то его ищут в мешанных стратегиях.
		Смешанные стратегия первого игрока задаются наборами вероятностей $\overline{X}(x_1, x_2,, x_m)$, с которыми игрок применяет свои чистые стратегии, S_1 — множество всех его смешанных стратегий. Смешанные стратегия второго игрока задаются
		наборами вероятностей $Y(y_1, y_2,, y_n)$, с которыми игрок применяет свои чистые стратегии, S_2 — множество всех его смешанных стратегий. Эти наборы можно рассматривать как n -мерные и m -мерные векторы, для координат которых выполняются условия

Если два игрока выбрали смешанные стратегии $\overline{X}(x_1, x_2, ..., x_m)$ и $\overline{Y}(y_1, y_2, ..., y_n)$, то математические ожидания выигрышей игроков равны

$$M_1(\overline{X}, \overline{Y}) = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i y_j, \quad M_2(\overline{X}, \overline{Y}) = \sum_{i=1}^m \sum_{j=1}^n b_{ij} x_i y_j.$$

Определение 1. Стратегии игроков \overline{X} * и \overline{Y} * образуют равновесие Нэша (в смешанных стратегиях) если никому из игроков не выгодно от них отклоняться при условии, что другой игрок следует своей равновесной стратегии, т. е. если для любых стратегий \overline{X} и \overline{Y}

$$M_1(\overline{X}*,\overline{Y}*) \ge M_1(\overline{X},\overline{Y}*), \qquad M_2(\overline{X}*,\overline{Y}*) \ge M_2(\overline{X}*,\overline{Y})$$

<u>Теорема 1.</u> В любой биматричной игре существует хотя бы одно равновесие Нэша (в смешанных стратегиях).

Необходимые и достаточные условия равновесия по Нэшу, состоят в том, что:

- 1) каждый игрок при данном распределении стратегий, которые играют его противники, безразличен между чистыми стратегиями, которые он играет с положительной вероятностью;
 - 2) эти чистые стратегии не хуже тех, которые он играет с нулевой вероятностью.

15. Игры в развернутой форме, отражающие сценарии развития общественных явлений и социально-экономических процессов:

Игры в экстенсивной, или развернутой форме, представляются в виде ориентированного дерева, где каждая вершина определяет выбор соответствующего игрока. Дерево состоит из вершин и соединяющих их рёбер. Вершины подразделяются на терминальные (конечные) и нетерминальные. От каждой вершины отходят ветви, обозначающие стратегии данного игрока. Каждая нетерминальная вершина характеризуется множеством допустимых ходов и доступной для игрока информацией. Терминальные вершины сообщают о размере выигрыша, получаемого по их достижении.

Развернутая форма представления игры предполагает известными:

- множество игроков;
- определение очередности ходов (в какой последовательности игроки принимают решения);
- множество возможных решений каждого из игроков в момент их хода;
- информацию, которой располагает каждый из игроков в моменты принятия решений;
- платежи каждого из игроков, определенные на всевозможных комбинациях выбираемых ими ходов.

6.6. Шкалы и критерии оценивания по формам текущего контроля и промежуточной аттестации

Шкала и критерии оценивания

Оценка	Оценка Критерии оценивания для мероприятий контроля с применением 4	
	балльной системы	
«отлично»	Повышенный ПК-2.1, ПК-2.2, ПК-2.3	
«хорошо»	Стандартный ПК-2.1, ПК-2.2, ПК-2.3	
«удовлетворительно»	Пороговый ПК-2.1, ПК-2.2, ПК-2.3	
«неудовлетворительно»	Результаты обучения не сформированы на пороговом уровне	